Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.650
1.
Food Res Int ; 186: 114374, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729731

As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.


Chlorogenic Acid , Emulsifying Agents , Emulsions , Ergosterol , Particle Size , Water , Ergosterol/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Water/chemistry , Chlorogenic Acid/chemistry , Viscosity , Antioxidants/chemistry , Oils/chemistry , Hydrogen-Ion Concentration
2.
Water Sci Technol ; 89(9): 2512-2522, 2024 May.
Article En | MEDLINE | ID: mdl-38747964

This manuscript presents a novel approach for developing an environmentally friendly and effective oil-water separation membrane. Achieving a superhydrophobic (SH) coating on textile fabric (TF) involved a two-step process. Initially, the surface roughness was enhanced by applying bio-zinc oxide (ZnO) nanoparticles obtained from Thymbra spicata L. Subsequently, the roughened surface was modified with stearic acid, a material known for its low surface energy. The bio-ZnO nanoparticles exhibit a circular morphology with an average size of 21 nm. The coating demonstrated remarkable mechanical stability, maintaining SH properties even after an abrasion length of 300 mm. Chemical stability studies revealed that the prepared membrane retained SH properties within a pH range of 5-11, which ensures robust performance. Absorption capacity measurements showcased different capacities for n-hexane (Hex), corn oil (C.O), and silicone oil (S.O), with consistent performance over 10 absorption-desorption cycles. High oil-water separation efficiencies were achieved for hexane, C.O, and S.O, emphasizing the coating's versatility. Flux rate measurements demonstrated that oil passed through the membrane efficiently, with the highest flux observed for Hex. The prepared SH membrane has superior mechanical and chemical stability and high separation efficiencies, which positions it as a promising candidate for diverse industrial applications.


Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Zinc Oxide , Zinc Oxide/chemistry , Water/chemistry , Oils/chemistry
3.
ACS Sens ; 9(4): 2066-2074, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38627252

In microfluidics, water droplets are often used as independent biochemical microreactor units, enabling the implementation of massively parallel screening assays where only a few of the reacting water droplets yield a positive result. However, sampling the product of these few successful reactions is an unsolved challenge. One possible solution is to use acoustic tweezers, which are lab-free, easily miniaturized, and biocompatible manipulation tools, and existing acoustic tweezers manipulating particles or cells, and water droplet manipulation in oil with an acoustic tweezer is absent. The first challenge in attempting to recover a few water droplets from a large batch is the selective manipulation of water droplets in an oil system. In this paper, we trap and manipulate single water droplets in oil using integrated single-beam (focused beam/vortex beam) acoustic tweezers for the first time. We find that water droplets with a diameter smaller than half a wavelength are trapped by acoustic vortices, while larger ones are better captured by focused acoustic beams. It is the first step to extract the target water droplet microreactors (positive ones) in an oil system and analyze their content. Compared to previous techniques, such as fluorescence-activated cell sorting (FACS), our technique is sparse, meaning that the sampling time is proportional to the number of droplets required and very insensitive to the total number of microreactors, making it well suited for large-scale screening assays.


Acoustics , Oils , Water , Water/chemistry , Oils/chemistry , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Particle Size
4.
Chem Commun (Camb) ; 60(40): 5330-5333, 2024 May 14.
Article En | MEDLINE | ID: mdl-38666704

Single-cell nanoencapsulation (SCNE) has great potential in the enhancement of therapeutic effects of probiotic microbes. However, the material scope has been limited to water-soluble compounds to avoid non-biocompatible organic solvents that are harmful to living cells. In this work, the SCNE of probiotic Lactobacillus acidophilus with water-insoluble luteolin and Fe3+ ions is achieved by the vortex-assisted, biphasic water-oil system. The process creates L. acidophilus nanoencapsulated in the luteolin-Fe3+ shells that empower the cells with extrinsic properties, such as resistance to lysozyme attack, anti-ROS ability, and α-amylase-inhibition activity, as well as sustaining viability under acidic conditions. The proposed protocol, embracing water-insoluble flavonoids as shell components in SCNE, will be an advanced add-on to the chemical toolbox for the manipulation of living cells at the single-cell level.


Lactobacillus acidophilus , Luteolin , Oils , Probiotics , Water , Lactobacillus acidophilus/metabolism , Probiotics/chemistry , Water/chemistry , Luteolin/chemistry , Oils/chemistry , alpha-Amylases/metabolism
5.
Open Vet J ; 14(1): 398-406, 2024 Jan.
Article En | MEDLINE | ID: mdl-38633149

Background: The use of traditional medicine against viral diseases in animal production has been practiced worldwide. Herbal extracts possess organic substances that would improve chicken body performance. Aim: The current study was designed to evaluate the effect of either thyme or ginseng oil in regard to their immune-modulatory, antiviral, and growth promoter properties. Methods: Two hundred and forty-one-day-old broiler chicks were allocated into eight equal groups as the following: group 1; nonvaccinated and nontreated and group 2; Newcastle disease virus (NDV) vaccinated and nontreated. Birds of groups 3 and 4 were treated with thyme oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 5 and 6 were treated with ginseng oil (200 mg/l of drinking water for 12 hours/day) without or with NDV vaccination. Birds of groups 7 and 8 were treated with a combination of ginseng oil (100 mg/l of drinking water) and thyme oil (100 mg/l of drinking water) for 12 hours/day. On the 35th day of life, birds in all the experimental groups were given 0.1 ml of a virulent genotype VIId NDV strain suspension containing 106.3 EID50/ml intramuscularly. Results: Administration of ginseng and thyme oils each alone or simultaneously to birds either vaccinated or nonvaccinated elicited a significant improvement in body performance parameters. Administration of thyme and ginseng each alone or concurrently to vaccinated birds (Gp 4, 6, and 8) induced a higher hemagglutination inhibition (HI) titer of 6, 7.3, and 6.3 log2 at 21 days of age, 6.7, 7.6, and 7 log2, at 28 days of age and 7, 8, and 6.8 log2 at 35 days of age, respectively. Challenge with vNDV genotype VII led to an increase in the NDV-specific HI-Ab titers 10 days post challenge in all the experimental groups. In addition, thyme, ginseng oils, or a combination of them improved the protection from mortality in vaccinated birds; by 100%, 100%, and 90%, respectively, compared with 80% protection from mortality in vaccinated-only birds post-NDV challenge. Moreover, NDV-vaccinated birds treated either with thyme; ginseng or their combination showed negative detection of the virus in both tracheal and cloacal swabs and nonvaccinated groups that received oils showed improvement in vNDV shedding in tracheal and cloacal swabs. Conclusion: It could be concluded that the administration of thyme and ginseng essential oils to broilers can improve productive performance parameters, stimulate humoral immunity against, and protect from vNDV infection.


Drinking Water , Newcastle Disease , Panax , Plant Oils , Thymol , Thymus Plant , Animals , Newcastle disease virus/genetics , Chickens , Antibodies, Viral , Oils
6.
Mar Drugs ; 22(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38667763

Marine microalgae Schizochytrium sp. have a high content of docosahexaenoic acid (DHA), an omega-3 fatty acid that is attracting interest since it prevents certain neurodegenerative diseases. The obtention of a bioactive and purified DHA fatty acid ester using a whole-integrated process in which renewable sources and alternative methodologies are employed is the aim of this study. For this reason, lyophilized Schizochytrium biomass was used as an alternative to fish oil, and advanced extraction techniques as well as enzymatic modification were studied. Microalgal oil extraction was optimized via a surface-response method using pressurized liquid extraction (PLE) obtaining high oil yields (29.06 ± 0.12%) with a high concentration of DHA (51.15 ± 0.72%). Then, the enzymatic modification of Schizochytrium oil was developed by ethanolysis using immobilized Candida antarctica B lipase (Novozym® 435) at two reaction temperatures and different enzymatic loads. The best condition (40 °C and 200 mg of lipase) produced the highest yield of fatty acid ethyl ester (FAEE) (100%) after 8 h of a reaction attaining a cost-effective and alternative process. Finally, an enriched and purified fraction containing DHA-FAEE was obtained using open-column chromatography with a remarkably high concentration of 93.2 ± 1.3% DHA. The purified and bioactive molecules obtained in this study can be used as nutraceutical and active pharmaceutical intermediates of marine origin.


Docosahexaenoic Acids , Esters , Lipase , Microalgae , Stramenopiles , Docosahexaenoic Acids/chemistry , Lipase/metabolism , Lipase/chemistry , Stramenopiles/chemistry , Microalgae/chemistry , Esters/chemistry , Enzymes, Immobilized/chemistry , Fungal Proteins , Biomass , Fish Oils/chemistry , Lipids/chemistry , Oils/chemistry , Aquatic Organisms , Fatty Acids/chemistry , Fatty Acids/analysis
7.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38564658

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Cross-Linking Reagents , Gene Expression , Globulins , Hypocreales , Monophenol Monooxygenase , Recombinant Proteins , Soybean Proteins , Monophenol Monooxygenase/biosynthesis , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/isolation & purification , Monophenol Monooxygenase/metabolism , Cross-Linking Reagents/isolation & purification , Cross-Linking Reagents/metabolism , Hypocreales/classification , Hypocreales/genetics , Hypocreales/growth & development , Hypocreales/metabolism , Globulins/chemistry , Globulins/metabolism , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Electroporation , Cellulose , Ammonium Sulfate , Chromatography, Gel , Fractional Precipitation , Emulsions/chemistry , Emulsions/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Protein Stability , Endoplasmic Reticulum/metabolism , Protein Sorting Signals , Oils/chemistry , Water/chemistry
8.
J Microencapsul ; 41(3): 190-203, 2024 May.
Article En | MEDLINE | ID: mdl-38602138

AIMS: To develop Antarctic krill oil emulsions with casein and whey protein concentrate (WPC) and study their physicochemical properties and storage stability. METHODS: Emulsions were prepared by homogenisation and ultrasonication. The properties of the emulsions were investigated via ultraviolet ray spectroscopy, dynamic light scattering, confocal laser scanning microscope, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Fourier transform infra-red spectrometer, and fluorescence spectrum. Shelf life was predicted by the Arrhenius model. RESULTS: Casein- and WPC-krill oil emulsions were well formed; the mean particle diameters were less than 128.19 ± 0.64 nm and 158 ± 1.56 nm, the polymer dispersity indices were less than 0.26 ± 0.01 and 0.27 ± 0.01, and the zeta potential were around -46.88 ± 5.02 mV and -33.51 ± 2.68 mV, respectively. Shelf life was predicted to be 32.67 ± 1.55 days and 29.62 ± 0.65 days (40 °C), 27.69 ± 1.15 days and 23.58 ± 0.14 days (50 °C), 24.02 ± 0.15 days and 20.1 ± 0.08 days (60 °C). CONCLUSION: The prepared krill oil emulsions have great potential to become a new krill oil supplement.


Caseins , Euphausiacea , Animals , Emulsions/chemistry , Whey Proteins/chemistry , Oils
9.
Biomolecules ; 14(4)2024 Apr 06.
Article En | MEDLINE | ID: mdl-38672464

Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.


Euphausiacea , Inflammatory Bowel Diseases , Euphausiacea/chemistry , Animals , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Oils/chemistry , Oils/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/therapeutic use , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/chemistry
10.
Molecules ; 29(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38675617

Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.


Emulsions , Particle Size , Plant Extracts , Tinospora , Water , Emulsions/chemistry , Plant Extracts/chemistry , Tinospora/chemistry , Water/chemistry , Sonication , Nanoparticles/chemistry , Oils/chemistry , Surface-Active Agents/chemistry
11.
J Environ Manage ; 358: 120815, 2024 May.
Article En | MEDLINE | ID: mdl-38593739

The present research study investigates the performance of pyrolysis oils recycled from waste tires as a collector in coal flotation. Three different types of pyrolysis oils (namely, POT1, POT2, and POT3) were produced through a two-step pressure pyrolysis method followed by an oil rolling process. The characteristics of POTs were adjusted using various oil-modifying additives such as mineral salts and organic solvents. The chemical structure of POTs was explored by employing necessary instrumental analysis techniques, including microwave-assisted acid digestion (MAD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier-transform infrared spectroscopy (FT-IR), and gas chromatography-mass spectrometry (GC-MS). The collecting performance of POTs in coal flotation was evaluated using an experimental design based on Response Surface Methodology (RSM), considering the ash content and yield of the final concentrate. The effect of the type and dosage of POTs was evaluated in conjunction with other important operating variables, including the dosage of frother, dosage of depressant, and the type of coal. Results of POTs characterization revealed that the pyrolysis oils were a complex composition of light and heavy hydrocarbon molecules, including naphthalene, biphenyl, acenaphthylene, fluorene, and pyrene. Statistical analysis of experimental results showed that among different POTs, POT1 exhibited remarkable superiority, achieving not only a 15% higher coal recovery but also a 12% lower ash content. The outstanding performance of POT1 was attributed to its unique composition, which includes a concentrated presence of carbon chains within the optimal range for efficient flotation. Additionally, the FT-IR spectra of POT1 reveal specific functional groups, including aromatic and aliphatic compounds, greatly enhancing its interaction with coal surfaces, as confirmed by contact angle measurement. This research provides valuable insights into the specific carbon chains and functional groups that contribute to the effectiveness of POT as a collector, facilitating the optimization of coal flotation processes and underscoring the environmental advantages of employing pyrolysis oils as sustainable alternatives in the mining industry.


Coal , Pyrolysis , Recycling , Gas Chromatography-Mass Spectrometry , Spectroscopy, Fourier Transform Infrared , Oils/chemistry , Automobiles
12.
Bioresour Technol ; 400: 130694, 2024 May.
Article En | MEDLINE | ID: mdl-38614149

Recycling waste into commercial products is a profitable strategy but the lifetime of immobilized cells for long-term waste treatment remains a problem. This study presents alternative cell immobilization methods for valorizing food waste (FW) and oily food waste (OFW) to microbial carotenoids and proteins. Carriers (pumice or smectite), magnetite nanoparticles, and isolated photosynthetic bacteria were integrated to obtain magnetically recoverable bacteria-pumice and bacteria-smectite nanocomposites. After recycling five batches (50 d), chemical oxygen demand removal from FW reached 76% and 78% with the bacteria-pumice and bacteria-smectite nanocomposite treatments, respectively, and oil degradation in OFW reached 71% and 62%, respectively. Destructive changes did not occur, suggesting the durability of nanocomposites. The used nanocomposites had no impact on the lifespan of Moina macrocopa or water quality as assessed by toxicity analysis. Bacteria-pumice and bacteria-smectite nanocomposites are efficient for food waste recycling and do not require secondary treatment before being discharged into the environment.


Bacteria , Cells, Immobilized , Nanocomposites , Silicates , Zooplankton , Nanocomposites/chemistry , Silicates/chemistry , Silicates/pharmacology , Animals , Cells, Immobilized/metabolism , Food , Recycling , Biological Oxygen Demand Analysis , Waste Products , Biodegradation, Environmental , Oils/chemistry , Food Loss and Waste
13.
J Environ Manage ; 358: 120812, 2024 May.
Article En | MEDLINE | ID: mdl-38615397

Coke wastewater is a complex industrial wastewater due to its high content of toxic compounds such as cyanides, thiocyanates, phenols, tar, oils, and fats. After a series of treatments, wastewater with a high ammonium content is obtained (around 4,150 mg·L-1). A stripping process is used to reduce it. Certain pollutants in the influent, such as tar, polycyclic aromatic hydrocarbons (PAHs), oils, fats and total suspended solids (TSS), interfere with stripping and therefore must be previously removed. In this study, the performance of a pilot-scale airlift sand filter was evaluated under real conditions for the reduction of the concentration of tar, PAHs, oils, fats and TSS, before stripping. Prior to the sand filter, a cationic flocculant was added to the influent (2 ppm). High (10 mm.min-1), medium (7.5 mm.min-1) and low sand speeds (1.9-2.6 mm.min-1) were assessed. The latter conditions gave the best results: a decrease of 98.2% in TSS, 99.7% in oils, fats and grease and 97.6% in PAHs. The final effluent (≤ 1.6 mg PAHs·L-1, ≤ 5 mg TSS·L-1 and ≤ 0.05 mg·L-1 of fats, oils and grease) was suitable for the stripping process.


Ammonium Compounds , Coke , Filtration , Polycyclic Aromatic Hydrocarbons , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Ammonium Compounds/analysis , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Fats/chemistry , Fats/analysis , Oils/chemistry
14.
J Environ Manage ; 358: 120909, 2024 May.
Article En | MEDLINE | ID: mdl-38642487

Achieving an equilibrium between exceptional oil absorption and remarkable elasticity has emerged as a formidable challenge for magnetic porous materials designed for oil absorption. Here, we propose an original, magnetic and superhydrophobic cellulose nanofibril (CNF) based aerogel system with a rope-ladder like skeleton by to greatly improve the issue. Within this system, CNF as the skeleton was combined with multiwalled carbon nanotubes (MWCNT)@Fe3O4 as the magnetic and enhanced component, both methyltrimethoxysilane (MTMS) and acetonitrile-extracted lignin (AEL) as the soft-hard associating constituents. The resultant CNF based aerogel shows a rope-ladder like pore structure to contribute to high elasticity and excellent oil absorption (28.34-61.09 g/g for various oils and organic solvents) under the synergistic effect of Fe3O4@MWCNT, AEL and MTMS, as well as good specific surface area (27.97 m2/g), low density (26.4 mg/cm3). Notably, despite the introduced considerable proportion (0.5 times of mass-CNF) of Fe3O4@MWCNT, the aerogel retained an impressive compression-decompression rate (88%) and the oil absorption efficiency of above 87% for various oils due to the soft-hard associating structure supported by both MTMS and AEL. This study provides a prospective strategy to balance between high elasticity and excellent oil absorption of CNF based aerogel doping inorganic particles.


Cellulose , Hydrophobic and Hydrophilic Interactions , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry , Oils/chemistry , Gels/chemistry , Nanotubes, Carbon/chemistry , Elasticity , Porosity
15.
Int J Biol Macromol ; 266(Pt 1): 131040, 2024 May.
Article En | MEDLINE | ID: mdl-38518937

This study aimed to solve the issue of poor lipophilicity of natural bovine serum albumin (BSA) by combining with liposomes (Lips) to stabilize high oil-phase emulsions (HOPEs). The interaction between BSA and Lips was mainly driven by hydrophobic forces, followed by hydrogen bonding. The secondary structure and tertiary structure of BSA were characterized and indicated that the addition of Lips promoted the structural expansion of BSA exposing the hydrophobic groups inside. Interfacial adsorption behaviours were assessed through dynamic interfacial tension, three-phase contact angle, and quartz crystal microbalance with dissipation. These results indicated that BSA-Lips crosslinking improved wettability, promoting adsorption and rearrangement at the oil-water interface, thereby resulting in a dense interfacial layer. The emulsifying efficacy of BSA-stabilized HOPEs also displayed a distinct Lips dependency. Varying the BSA-to-Lips ratio transformed their consistency from flowing to semi-solid, reinforcing the gel network. Under optimal conditions (BSA: Lips = 1:1), the droplet size of BSA-Lips stabilized HOPEs reached a minimum with a highly uniform distribution. Moreover, a 1:1 BSA to Lips ensured outstanding storage, thermal, and centrifugal stability for the HOPEs. This work provides valuable references for the interaction between protein and Lips, guiding the development of highly stable HOPEs stabilizers.


Emulsions , Liposomes , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Liposomes/chemistry , Emulsions/chemistry , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Oils/chemistry , Adsorption , Wettability
16.
J Colloid Interface Sci ; 663: 591-600, 2024 Jun.
Article En | MEDLINE | ID: mdl-38428116

HYPOTHESIS: The key feature of living cells is multicompartmentalization for enzymatic reactions. Artificial cell-like multicompartments with micro domains are appealing to mimic the biological counterparts. In addition, establishing a sustainable, efficient, and controllable reaction system for enzymatic hydrolysis is imperative for the production of natural fatty acids from animal and plant-based fats. EXPERIMENTS: Reverse Janus emulsion microreactors, i.e. (W1 + W2)/O, is constructed through directly using natural fats as continuous phase and aqueous two-phase solutions (ATPS) as inner phases. Enzyme is confined in the compartmented aqueous droplets dominated by the salt of Na2SO4 and polyethylene glycol (PEG). Enzyme catalyzed ester hydrolysis employed as a model reaction is performed under the conditions of agitation-free and mild temperature. Regulation of reaction kinetics is investigated by diverse droplet topology, composition of inner ATPS, and on-demand emulsification. FINDINGS: Excellent enzymatic activity toward hydrolysis of plant and animal oils achieves 88.5 % conversion after 3 h. Compartmented micro domains contribute to condense and organize the enzymes spatially. Timely removal of the products away from reaction sites of oil/water interface "pushed" the reaction forward. Distribution and transfer of enzyme in two aqueous lobes provide extra freedom in the regulation of hydrolysis kinetics, with equilibrium conversion controlled freely from 14.5 % to 88.5 %. Reversible "open" and "shut" of hydrolysis is acheived by on-demand emulsification and spontaneous demulsification. This paper paves the way to advancing progress in compartmentalized emulsion as a sustainable and high-efficiency platform for biocatalytic applications.


Oils , Sodium Chloride , Animals , Hydrolysis , Emulsions , Temperature
17.
Biomolecules ; 14(3)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38540690

This study explores the impact of rotational frying of three different food products on degradation of sterols, as well as their migration between frying oils and food. The research addresses a gap in the existing literature, which primarily focuses on changes in fat during the frying of single food items, providing limited information on the interaction of sterols from the frying medium with those from the food product. The frying was conducted at 185 ± 5 °C for up to 10 days where French fries, battered chicken, and fish sticks were fried in succession. The sterol content was determined by Gas Chromatography. This research is the first to highlight the influence of the type of oil on sterol degradation in both oils and food. Notably, sterols were found to be most stable when food products were fried in high-oleic low-linolenic rapeseed oil (HOLLRO). High-oleic soybean oil (HOSO) exhibited higher sterol degradation than high-oleic rapeseed oil (HORO). It was proven that cholesterol from fried chicken and fish sticks did not transfer to the fried oils or French fries. Despite initially having the highest sterol content in fish, the lowest sterol amount was recorded in fried fish, suggesting rapid degradation, possibly due to prefrying in oil with a high sterol content, regardless of the medium used.


Brassica napus , Phytosterols , Animals , Soybean Oil , Rapeseed Oil , Sterols , Cooking/methods , Oils
18.
Ann Agric Environ Med ; 31(1): 144-146, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38549489

INTRODUCTION: This case report describes a case of exogenous lipoid pneumonia (ELP) resulting from the inhalation of a lipoid substance. Lipoid pneumonia, also known as cholesterol pneumonia or golden pneumonia, is an uncommon inflammatory lung disease characterized by the presence of lipid-laden macrophages in the alveolar walls and lung interstitial tissue. Exogenous lipoid pneumonia occurs when substances containing lipids enter the airways through aspiration or inhalation, triggering an inflammatory response. CASE REPORT: The patient in this case study was an 83-year-old woman with hypertension and diabetes mellitus who had been using paraffin oil as a mouthwash for an extended period. The diagnosis of exogenous lipoid pneumonia was established based on the patient's history of exposure to liquid paraffin oil, typical radiological findings, and histopathological examination.


Paraffin , Pneumonia, Lipid , Female , Humans , Aged, 80 and over , Pneumonia, Lipid/diagnosis , Pneumonia, Lipid/diagnostic imaging , Mineral Oil/toxicity , Lung , Oils/toxicity
19.
J Chromatogr A ; 1720: 464804, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38461770

Advanced chemical recycling techniques provide new avenues for handling and recycling mixed plastic waste; pyrolysis is a prominent approach involving heating plastic waste in an oxygen-free environment to create pyrolysis oils. Pyrolysis oils must be thoroughly characterized before being refined into fuels and chemical feedstocks. Here, a method based on supercritical fluid chromatography with ultraviolet detection was developed to analyze plastic waste pyrolysis oils. Multiple stationary phases were examined, and 2-ethyl pyridine was chosen as the best stationary phase for resolving pyrolysis oil components. Different standards and different plastic waste pyrolysis oils were compared across the different stationary phases. Up to three columns were serially coupled to increase efficiency and column capacity. It was found that a general method using ethanol as a modifier and two 2-ethyl pyridine columns could effectively resolve plastic waste pyrolysis oils. The potential for differentiating polyethylene and polypropylene feedstocks was demonstrated using principal component analysis.


Chromatography, Supercritical Fluid , Plastics , Plastics/chemistry , Pyrolysis , Oils/chemistry , Pyridines
20.
AAPS PharmSciTech ; 25(4): 67, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519767

Despite being discovered over five decades ago, little is still known about ivermectin. Ivermectin has several physico-chemical properties that can result in it having poor bioavailability. In this study, polymorphic and co-crystal screening was used to see if such solid-state modifications can improve the oil solubility of ivermectin. Span® 60, a lipophilic non-ionic surfactant, was chosen as co-former. The rationale behind attempting to improve oil solubility was to use ivermectin in future topical and transdermal preparations to treat a range of skin conditions like scabies and head lice. Physical mixtures were also prepared in the same molar ratios as the co-crystal candidates, to serve as controls. Solid-state characterization was performed using X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The FTIR spectra of the co-crystal candidates showed the presence of Span® 60's alkyl chain peaks, which were absent in the spectra of the physical mixtures. Due to the absence of single-crystal X-ray data, co-crystal formation could not be confirmed, and therefore these co-crystal candidates were referred to as co-processed crystalline solids. Following characterization, the solid-state forms, physical mixtures and ivermectin raw material were dissolved in natural penetration enhancers, i.e., avocado oil (AVO) and evening primrose oil (EPO). The co-processed solids showed increased oil solubility by up to 169% compared to ivermectin raw material. The results suggest that co-processing of ivermectin with Span® 60 can be used to increase its oil solubility and can be useful in the development of oil-based drug formulations.


Ivermectin , Oils , Solubility , X-Ray Diffraction , Drug Compounding , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared/methods
...